一、问题提出
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
二、教学案例
【片断1】
1、例1:一个圆柱形的茶叶桶,底面周长是28.3厘米,高是13厘米。它的侧面积是多少平方厘米?
生:独立分析
2、练习:求下面各圆柱的侧面积
(1)底面直径是12厘米,高2厘米。
(2)底面半径3厘米,高5厘米。
生:任选一题独立计算。
师:结合上面我们做的三道题,谁能说一说怎样求圆柱的侧面积?
生:归纳小结。(略)
3、用长方形、正方形、平行四边形分别围成圆柱体(重叠部分不计),各有几种围法?
师:请同学们动脑子想一想,然后利用手中的学具检验想得对不对,最后上台来演示给大家看。
生:演示
4、想象:绕着长方形的一边旋转一周,得到一个什么形体?这个形体的有关部分与长方形的长和宽关系怎样?
5、这是一个圆柱体的侧面展开图。单位:厘米
请你给它配上合适的底面。(图片略)
三、课后反思
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片断1通过学生动手动脑,来突破难点;片断2引导学生在应用中加深认识,形成能力。
1、不教之教,使学生得到满足。
叶圣陶先生说过:“教就是为了达到不需要教”。假如教师占用了大量的时间分析讲解,一点也不给学生留下活动的时空,学生充其量只是一个被动接受知识的容器,长此以往,心智凝固,表现欲锐减,创造性扼杀,怎能获得成功?
本节课,教师所说的话并不多,学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使学生不断探索交流,增强他们学习数学的兴趣与自信心。从而树立自己去探索真理的志向,这一切都会产生强烈的、稳定的内部诱因,使学生的智慧、能力、情感、信念等不断得到提升和超越,心灵受到震撼、心理得到满足。
2、主动探索,使学生获得成功。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
在《数学课程标准》中提到了:“学生应在教师的引导下,能够积极参与生动、直观的数学活动,增强学生对数学的感受。”
本节课,教师通过让学生动手卷纸,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
3、在练习中,使不同学生享受成功。
在《数学课程标准》的教学建议中指出:“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或是教师事先预设的答案作为评价的依据,限制学生的发展。”学生勇于回答问题的行为教师首先应给予肯定,至于回答的正确与否,是第二位的,是由学生集体讨论逐步澄清的。教师不能把自己放在“裁判员”的角色上。否则,久而久之,学生在主体发展方面就会受到限制。
本节课,教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。