(一)、乘除法各部分之间的关系:
(1)乘法各部分之间的关系:
因数×因数=积一个因数=积÷另一个因数
(2)除法各部分之间的关系:
没有余数的除法:有余数的除法:
被除数=商×除数被除数=商×除数 余数除数=被除数÷商除数=(被除数-余数)÷商
商=被除数÷除数商=(被除数-余数)÷除数
(3)乘、除法之间的关系:
除法是乘法的逆运算注意:0不能作除数。
(4)整除:a÷b(b≠0)=c则a能被b整除,b能整除a。
(二)乘法运算律
1、乘法交换律:
两个数相乘,交换因数的位置,它们的积不变。这个规律叫做乘法交换律。用字母表示为:ab=ba
2、乘法结合律:
三个数相乘,先把前两个数相乘再乘第三个数,或先将后两个数相乘再乘第一个数,它们的积不变。这个规律叫做乘法结合律。用字母表示为:(ab)c=a(bc)
3、乘法分配律:
两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把积相加。这个规律叫做乘法分配律。用字母表示为:
(a b)c=ac bcac bc=(a b)c
乘法分配律的拓展:
两个数的差与一个数相乘,可以用这个数分别去乘相减的两个数,再把积相减。用字母表示为:
(a-b)c=ac-bcac-bc=(a-b)c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b
(五)积的变化规律
①一个因数缩小(扩大)几倍,另一个因数扩大(缩小)相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
③一个因数扩大m倍,另一个因数扩大n,积扩大m×n倍;
一个因数缩小m倍,另一个因数缩小n,积缩小m×n倍;
一个因数扩大(缩小)m倍,另一个因数缩小(扩大)n倍,积扩大或缩小m÷n倍
(六)解决问题:
1、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
2、工程问题
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
3、最多、最少问题
人数最少多买贵的,人数最少多买便宜的。
4、购物、旅游合算问题
先计算后比较。