等差数列求和方法总结

发布时间:2021-09-03 22:17:11

  求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。下面是小编整理的相关内容,欢迎阅读参考!

  一.用倒序相加法求数列的前n项和

  如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

  例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1 an)/2

  解:Sn=a1 a2 a3 ... an   ①

  倒序得:Sn=an an-1 an-2 … a1  ②

  ① ②得:2Sn=(a1 an) (a2 an-1) (a3 an-2) … (an a1)

  又∵a1 an=a2 an-1=a3 an-2=…=an a1

  ∴2Sn=n(a2 an)  Sn=n(a1 an)/2

  二.用公式法求数列的前n项和

  对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

  三.用裂项相消法求数列的前n项和

  裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

  四.用错位相减法求数列的前n项和

  错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

  五.用迭加法求数列的前n项和

  迭加法主要应用于数列{an}满足an 1=an f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an 1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

  六.用分组求和法求数列的前n项和

  分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

  七.用构造法求数列的前n项和

  构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

[等差数列求和方法总结]相关文章:

阅读更多工作总结,请访问生活日记网 用日志记录点滴生活!范文频道。
喜欢范文,那就经常来哦

该内容由生活日记网提供.